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Abstract
The purpose of this paper is to present a systemic study of some families of
multiple q-Euler numbers and polynomials and we construct multiple q-zeta
functions which interpolate multiple q-Euler numbers at a negative integer.
This is a partial answer to the open question in a previous publication (see Kim
et al 2001 J. Phys. A: Math. Gen. 34 7633–8).

PACS number: 02.10.De
Mathematics Subject Classification: 11B68, 11S80

1. Introduction

Let p be a fixed odd prime number. Throughout this paper Zp, Qp, C and Cp will, respectively,
denote the ring of p-adic rational integers, the field of p-adic rational numbers, the complex
number field and the completion of algebraic closure of Qp. Let N be the set of natural
numbers and Z+ = N ∪ {0}. Let vp be the normalized exponential valuation of Cp with
|p|p = p−vp(p) = 1

p
.

Kurt Hensel (1861–1941) invented the so-called p-adic numbers around the end of the
19th century. Even though they have been discovered a 100 years ago, today these numbers
are still enveloped in an aura of mystery in the science community. The p-adic numbers are
used not only in mathematical physics, particularly in string theory and field theory, but also in
other areas of natural sciences in which one faces complicated fractal behavior and hierarchical
structures, for example, in turbulence theory, dynamical systems, statistical physics, biology,
etc, cf [23–25, 30]. On the other hand, non-Archimedean functional analysis has been
developed rapidly in recent years together with its applications in mathematical physics (see
[1, 5–18, 23–26, 30]). Recently, theoretical physicists have envisioned ultrametric structures
similar to tree-like structures arising in the study of physical systems, and have sought to
construct related models using p-adic numbers and p-adic analysis. Spin glasses (with
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their ultrametric structures) formed an initial field of application of ultrametric techniques
in theoretical physics (see [23–25]). In particular, the fact that at a very small distance,
the physical space may no longer be Archimedean seems plausible to some mathematical
physicists, cf [24–26, 30]. Therefore, p-adic analysis and the non-Archimedean geometry can
be used not only for the description of geometry at small distances but also for describing the
chaotic behavior of complicated systems, such as spin glasses and fractals, in the framework
of traditional theoretical and mathematical physics, cf [23–26, 30]. In [27], Albeverio et al
proved several limit theorems in the sense of the p-adic probability. The latter is understood as
the p-adic limit of relative frequencies or, more generally, as a p-adic-valued measure. In 1995,
Khrennikov considered the foundations of p-adic probability theory in which the probabilities
of events are p-adic numbers. This theory is based on generalizations of the frequency theory of
probability. The main idea is to consider the statistical stabilization of relative frequencies not
only in the real topology but also in the p-adic topology (see [28]). A statistical interpretation
of p-adic quantum mechanics and field theory with p-adic-valued functions is given by means
of p-adic probability theory (see [28, 30]). There is an unexpected connection of p-adic
analysis with q-analysis and quantum groups, and thus with noncommutative geometry q-
analysis is a sort of q-deformation of the ordinary analysis. Spherical functions on quantum
groups are q-special functions. When one talks of q-extension, q is variously considered as an
indeterminate, a complex number q ∈ C or p-adic number q ∈ Cp. If q ∈ C, one normally
assumes |q| < 1, and if q ∈ Cp, one normally assumes |1 − q|p < 1. We use the notation

[x]q = 1 − qx

1 − q
and [x]−q = 1 − (−q)x

1 + q
(see [4–7]).

The q-factorial is defined as [n]q! = [n]q[n − 1]q · · · [2]q[1]q . For a fixed d ∈ N with
(p, d) = 1, d ≡ 1(mod 2), we set

X = Xd = lim←
N

Z/dpN, X∗ =
⋃

0<a<dp

(a, p) = 1

a + dpZp,

a + dpNZp = {x ∈ X|x ≡ a (mod pN)},
where a ∈ Z satisfies the condition 0 � a < dpN . The q-binomial formulas are known as

(b; q)n = (1 − b)(1 − bq) . . . (1 − bqn−1) =
n∑

i=0

(
n

i

)
q

q(i

2)(−1)ibi

and

1

(b; q)n
= 1

(1 − b)(1 − bq) . . . (1 − bqn−1)
=

∞∑
i=0

(
n + i − 1

i

)
q

bi,

where
(
n

k

)
q

= [n]q !
[n−k]q ![k]q ! = [n]q [n−1]q ···[n−k+1]q

[k]q ! are the q-binomial coefficients for n, k ∈ Z+

(see [4, 8, 9]).
Recently, many authors have studied the q-extension in various areas (see [4–6]). In this

paper, we consider the theory of q-integrals in the p-adic number field associated with Euler
numbers and Euler polynomials closely related to the fermionic distribution. We say that f is
a uniformly differentiable function at a point a ∈ Zp, and write f ∈ UD(Zp), if the difference
quotient Ff (x, y) = f (x)−f (y)

x−y
has a limit f ′(a) as (x, y) → (a, a). For f ∈ UD(Zp), the

fermionic p-adic q-integral on Zp is defined as

Iq(f ) =
∫

Zp

f (x) dμq(x) = lim
N→∞

1 + q

1 + qpN

pN −1∑
x=0

f (x)(−q)x, (see [7, 8, 9]). (1)

2
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Thus, we note that

lim
q→1

Iq(f ) = I1(f ) =
∫

Zp

f (x) dμ1(x). (2)

For n ∈ N, let fn(x) = f (x + n). Then we have

I1(fn) = (−1)nI1(f ) + 2
n−1∑
l=0

(−1)n−1−lf (l). (3)

Using formula (3), we can readily derive the Euler polynomials, En(x), namely∫
Zp

e(x+y)t dμ1(y) = 2

et + 1
ext =

∞∑
n=0

En(x)
tn

n!
(see [16–20]).

In the special case x = 0, the sequence En(0) = En is called the nth Euler number. In one of
an impressive series of papers (see [1–3, 21, 23]), Barnes developed the so-called multiple zeta
and multiple gamma functions. Barnes’ multiple zeta function ζN(s, w|a1, . . . , aN) depends
on the parameters a1, . . . , aN that will be assumed to be positive. It is defined by the following
series:

ζN(s, w|a1, . . . , aN) =
∞∑

m1,...,mN =0

(w + m1a1 + · · · + mNaN)−s for 
(s) > N,
(w) > 0.

(4)

From (4), we can easily see that

ζM+1(s, w + aM+1|a1, . . . , aN+1) − ζM+1(s, w|a1, . . . , aN+1) = −ζM(s,w|a1, . . . , aN),

and ζ0(s, w) = w−s (see [11]). Barnes showed that ζN had a mesomorphic continuation in
s (with simple poles only at s = 1, 2, . . . , N) and defined his multiple gamma function
�N(w) in terms of the s-derivative at s = 0, which may be recalled here as follows:
ψn(w|a1, . . . , aN) = ∂sζN(s, w|a1, . . . , aN)|s=0 (see [11]). Barnes’ multiple Bernoulli
polynomials Bn(x, r|a1, . . . , ar ) are defined by

t r∏r
j=1(e

aj t − 1)
ext =

∞∑
n=0

Bn(x, r|a1, . . . , ar )
tn

n!
,

(
|t | < max

1�i�r

2π

|ai |
)

, (see [11]). (5)

By (4) and (5), we see that

ζN(−m,w|a1, . . . , aN) = (−1)Nm!

(N + m)!
BN+m(w,N |a1, . . . , aN),

where w > 0 and m is a positive integer.
By using the fermionic p-adic q-integral on Zp, we consider the Barnes-type multiple

q-Euler polynomials and numbers in this paper. The main purpose of this paper is to present
a systemic study of some families of Barnes-type multiple q-Euler polynomials and numbers.
Finally, we construct a multiple q-zeta function which interpolates multiple q-Euler numbers
at a negative integer. This is a partial answer to the open question in [6, p 7637].

Barnes’ multiple zeta and gamma functions were also encountered by Shintani within the
context of analytic number theory (see [11]). Recently, several mathematicians have studied
multiple zeta functions or multiple zeta values and di-zeta values. It is apparent that these
numbers are of interest and importance. In particular, Barnes’ multiple zeta functions occur
within the context of knot theory and quantum field theory, cf [10–16, 29, 30]. Meanwhile,
the special values of Barnes’ multiple zeta functions at a positive integer have come to the
foreground in recent years both in connection with theoretical physics (Feynman diagrams)

3
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and the theory of mixed Tate motives, cf [30]. Ruijsenaars [29] showed how various known
results concerning Barnes’ multiple zeta and multiple gamma functions can be obtained as
specializations of simple features shared by a quite extensive class of functions. The pertinent
functions involve Laplace transforms, and their asymptotic behavior was obtained by exploiting
them. Ruijsenaars demonstrated how Barnes’ multiple zeta and multiple gamma functions fit
into the recently developed theory of minimal solutions to the first-order analytic difference
equations (see [29–31]). Both of these approaches to Barnes’ functions gave rise to novel
integral representations.

2. Barnes-type multiple q-Euler numbers and polynomials

Let x,w1, w2, . . . , wr be the complex numbers with positive real parts. In C, the Barnes-type
multiple Euler numbers and polynomials are defined by

2r∏r
j=1(e

wj t + 1)
ext =

∞∑
n=0

E(r)
n (x|w1, . . . , wr)

tn

n!
, for |t | < max

{
π

|wi | |i = 1, . . . , r

}
,

(6)

and E(r)
n (w1, . . . , wr) = E(r)

n (0|w1, . . . , wr), respectively (see [11, 12, 14]).
In this section, we assume that q ∈ Cp with |1−q|p < 1. We first consider the q-extension

of Euler polynomials as follows:

∞∑
n=0

En,q(x)
tn

n!
=

∫
Zp

e[x+y]q tdμ1(y) = 2
∞∑

m=0

(−1)m e[m+x]q t (see [7, 8, 17]) . (7)

Thus, we have En,q(x) = 2
(1−q)n

∑n
l=0

(n

l)(−1)lqlx

1+ql (see [7]). In the special case x = 0,
En,q = En,q(0) is called the q-Euler number. The q-Euler polynomials of order r ∈ N

are also defined by

∞∑
n=0

E(r)
n,q(x)

tn

n!
=

∫
Zp

· · ·
∫

Zp

e[x+x1+···+xr ]q tdμ1(x1) · · · dμ1(xr)

= 2r

∞∑
m=0

(
m + r − 1

m

)
(−1)me[m+x]q t (see [7, 8]). (8)

In the special case x = 0, the sequence E(r)
n,q(0) = E(r)

n,q is refereed as the q-extension of the
Euler number of order r. Let f ∈ N with f ≡ 1 (mod 2). Then we have

E(r)
n,q(x) =

∫
Zp

· · ·
∫

Zp

[x + x1 + · · · + xr ]nq dμ1(x1) . . . dμ1(xr)

= 2r

(1 − q)n

n∑
l=0

(
n

l

)
(−1)lqlx

f −1∑
a1,...,ar=0

∞∑
m1,...,mr=0

ql{∑r
i=1(ai+f mi)}(−1)

∑r
i=1(ai+f mi)

= 2r

∞∑
m1,...,mr=0

(−1)m1+···+mr [m1 + · · · + mr + x]nq . (9)

By (8) and (9), we obtain the following theorem.

4
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Theorem 1. For n ∈ Z+, we have

E(r)
n,q(x) = 2r

∞∑
m1,...,mr=0

(−1)m1+···+mr [m1 + · · · + mr + x]nq

= 2r

∞∑
m=0

(
m + r − 1

m

)
(−1)m[m + x]nq .

Let F (r)
q (t, x) = ∑∞

n=0 E(r)
n,q(x) tn

n! . Then we have

F (r)
q (t, x) = 2r

∞∑
m=0

(
m + r − 1

m

)
(−1)m e[m+x]q t

= 2r

∞∑
m1,...,mr=0

(−1)m1+···+mr e[m1+···+mr +x]q t . (10)

Let χ be Dirichlet’s character with conductor f ∈ N with f ≡ 1 (mod 2). Then the generalized
q-Euler polynomials attached to χ are defined by

∞∑
n=0

En,χ,q(x)
tn

n!
= 2

∞∑
m=0

(−1)mχ(m) e[m+x]q t . (11)

Thus, we have

En,χ,q(x) =
f −1∑
a=0

χ(a)(−1)a
∫

Zp

[x + a + fy]nq dμ1(y)

= [f ]nq

f −1∑
a=0

χ(a)(−1)aEn,qf

(
x + a

f

)
. (12)

In the special case, x = 0, the sequence En,χ,q(0) = En,χ,q is called the nth generalized
q-Euler numbers attached to χ . From (2) and (3), we can easily derive the following equation:

Em,χ,q(nf ) − (−1)nEm,χ,q = 2
nf −1∑
l=0

(−1)n−1−lχ(l)[l]mq .

Let us consider the higher order generalized q-Euler polynomials attached to χ as follows:∫
X

· · ·
∫

X

(
r∏

i=1

χ(xi)

)
e[x1+···+xr +x]q tdμ1(x1) · · · dμ1(xr) =

∞∑
n=0

E(r)
n,χ,q(x)

tn

n!
, (13)

where E(r)
n,χ,q(x) is called the nth generalized q-Euler polynomials of order r attached to χ .

By (13), we see that

E(r)
n,χ,q(x) = 2r

(1 − q)n

n∑
l=0

(
n

l

)
qlx(−1)l

f −1∑
a1,...,ar=0

⎛
⎝ r∏

j=1

χ(aj )

⎞
⎠ (−ql)

∑r
i=1 ai

(1 + qlf )r

= 2r

∞∑
m=0

(
m + r − 1

m

)
(−1)m

f −1∑
a1,...,ar=0

⎛
⎝ r∏

j=1

χ(aj )

⎞
⎠ (−1)

∑r
i=1 ai

⎡
⎣ r∑

j=1

aj + x + mf

⎤
⎦

n

q

, (14)

and
∞∑

n=0

E(r)
n,χ,q(x)

tn

n!
= 2r

∞∑
m1,...,mr=0

(−1)
∑r

j=1 mj

(
r∏

i=1

χ(mi)

)
e[x+

∑r
j=1 mj ]q t . (15)

5
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In the special case, x = 0, the sequence E(r)
n,χ,q(0) = E(r)

n,χ,q is called the nth generalized
q-Euler numbers of order r attached to χ .

By (14) and (15), we obtain the following theorem.

Theorem 2. Let χ be Dirichlet’s character with conductor f ∈ N, with f ≡ 1 (mod 2). For
n ∈ Z+, r ∈ N, we have

E(r)
n,χ,q(x) = 2r

(1 − q)n

n∑
l=0

(
n

l

)
qlx(−1)l

f −1∑
a1,...,ar=0

⎛
⎝ r∏

j=1

χ(aj )

⎞
⎠ (−ql)

∑r
i=1 ai

(1 + qlf )r

= 2r

∞∑
m=0

(
m + r − 1

m

)
(−1)m

f −1∑
a1,...,ar=0

⎛
⎝ r∏

j=1

χ(aj )

⎞
⎠ (−1)

∑r
i=1 ai

⎡
⎣ r∑

j=1

aj + x + mf

⎤
⎦

n

q

= 2r

∞∑
m1,...,mr=0

(−1)m1+···+mr

(
r∏

i=1

χ(mi)

)
[x + m1 + · · · + mr ]nq .

For h ∈ Z and r ∈ N, we introduce the extended higher order q-Euler polynomials as
follows:

E(h,r)
n,q (x)=

∫
Zp

· · ·
∫

Zp

q
∑r

j=1(h−j)xj [x + x1 + · · · + xr ]nq dμ1(x1) . . . dμ1(xr) (see [8]). (16)

From (16), we note that

E(h,r)
n,q (x) = 2r

∞∑
m1,...,mr=0

q(h−1)m1+···+(h−r)mr (−1)m1+···+mr [x + m1 + · · · + mr ]nq . (17)

It is known in [8] that

E(h,r)
n,q (x) = 2r

(1 − q)n

n∑
l=0

(
n

l

)
(−qx)l

(−qh−r+l; q)r
= 2r

∞∑
m=0

(
m + r − 1

m

)
q

(−qh−r )m[x + m]nq . (18)

Let F (h,r)
q (t, x) = ∑∞

n=0 E(h,r)
n,q (x) tn

n! . Then we have

F (h,r)
q (t, x) = 2r

∞∑
m=0

(
m + r − 1

m

)
q

q(h−r)m(−1)m e[m+x]q t

= 2r

∞∑
m1,...,mr=0

q
∑r

j=1(h−j)mj (−1)
∑r

j=1 mj e[x+m1+···+mr ]q t . (19)

Therefore, we obtain the following theorem.

Theorem 3. For h ∈ Z, r ∈ N and x ∈ Q+, we have

E(h,r)
n,q (x) = 2r

∞∑
m1,...,mr=0

q(h−1)m1+···+(h−r)mr (−1)m1+···+mr [m1 + · · · + mr + x]nq .

For f ∈ N, with f ≡ 1 (mod 2), it is easy to show the following distribution relation for
E(h,r)

n,q (x):

E(h,r)
n,q (x) = [f ]nq

f −1∑
a1,...,ar=0

(−1)a1+···+ar q
∑r

j=1(h−j)aj En,qf

(
x + a1 + · · · + ar

f

)
.

6
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Let us consider Barnes-type multiple q-Euler polynomials. For w1, . . . , wr ∈ Zp, we define
the Barnes-type q-multiple Euler polynomials as follows:

E(r)
n,q(x|w1, . . . , wr) =

∫
Zp

· · ·
∫

Zp

⎡
⎣ r∑

j=1

wjxj + x

⎤
⎦

n

q

dμ1(x1) . . . dμ1(xr). (20)

From (20), we can easily derive the following equation:

E(r)
n,q(x|w1, . . . , wr) = 2r

(1 − q)n

n∑
l=0

(
n

l

)
(−qx)l

(1 + qlw1) . . . (1 + qlwr )
, (see [8]). (21)

Thus, we have

E(r)
n,q(x|w1, . . . , wr) = 2r

(1 − q)n

n∑
l=0

(
n

l

)
(−qx)l

f −1∑
a1,...,ar=0

(−1)
∑r

i=1 ai ql
∑r

j=1 wj aj

(1 + qlf w1) . . . (1 + qlf wr )
, (22)

where f ∈ N with f ≡ 1 (mod 2). By (22), we see that

E(r)
n,q(x|w1, . . . , wr) = 2r

∞∑
m1,...,mr=0

(−1)m1+···+mr [x + w1m1 + · · · + wrmr ]nq . (23)

In the special case, x = 0, the sequence E(r)
n,q(w1, . . . , wr) = E(r)

n,q(0|w1, . . . , wr)

is called the nth Barnes-type multiple q-Euler number. Let F (r)
q (t, x|w1, . . . , wr) =∑∞

n=0 E(r)
n,q(x|w1, . . . , wr)

tn

n! . Then we have

F (r)
q (t, x|w1, . . . , wr) = 2r

∞∑
m1,...,mr=0

(−1)m1+···+mr e[x+w1m1+···+wrmr ]q t . (24)

Therefore, we obtain the following theorem.

Theorem 4. For w1, . . . , wr ∈ Zp, r ∈ N and x ∈ Q+, we have

E(r)
n,q(x|w1, . . . , wr) = 2r

∞∑
m1,...,mr=0

(−1)m1+···+mr [x + m1w1 + · · · + mrwr ]nq

= 2r

(1 − q)n

n∑
l=0

(
n

l

)
(−qx)l

(1 + qlw1) · · · (1 + qlwr )
.

For w1, . . . , wr ∈ Zp, a1, . . . , ar ∈ Z, we consider another q-extension of Barnes-type
multiple q-Euler polynomials as follows:

E(r)
n,q(x|w1, . . . , wr ; a1, . . . , ar )

=
∫

Zp

· · ·
∫

Zp

⎡
⎣x +

r∑
j=1

wjxj

⎤
⎦

n

q

q
∑r

i=1 aixi dμ1(x1) · · · dμ1(xr). (25)

Thus, we have

E(r)
n,q(x|w1, . . . , wr; a1, . . . , ar ) = 2r

(1 − q)n

n∑
l=0

(
n

l

)
(−1)lqlx

(1 + qlw1+a1) · · · (1 + qlwr +ar )
. (26)

From (25) and (26), we can derive the following equation:

E(r)
n,q(x|w1, . . . , wr; a1, . . . , ar ) = 2r

∑
m1,...,mr=0

(−1)
∑r

j=1 mj q
∑r

i=1 aimi

⎡
⎣x +

r∑
j=1

wjxj

⎤
⎦

n

q

. (27)

7
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Let F (r)
q (t, x|w1, . . . , wr ; a1, . . . , ar ) = ∑∞

n=0 E(r)
n,q(x|w1, . . . , wr; a1, . . . , ar )

tn

n! . Then, we
have

F (r)
q (t, x|w1, . . . , wr; a1, . . . , ar )

= 2r

∞∑
m1,...,mr=0

(−1)m1+···+mr qa1m1+···+armr e[x+w1m1+···+wrmr ]q t . (28)

Theorem 5. For r ∈ N, w1, . . . , wr ∈ Zp and a1, . . . , ar ∈ Z, we have

E(r)
n,q(x|w1, . . . , wr; a1, . . . ar ) = 2r

∞∑
m1,...,mr=0

(−1)
∑r

j=1 mj q
∑r

i=1 aimi

⎡
⎣x +

r∑
j=1

wjmj

⎤
⎦

n

q

.

Let χ be Dirichlet’s character with conductor f ∈ N, with f ≡ 1 (mod 2). Now
we consider the generalized the Barnes-type q-multiple Euler polynomials attached to χ as
follows:

E(r)
n,χ,q(x|w1, . . . , wr; a1, . . . , ar )

=
∫

X

· · ·
∫

X

[x + w1x1 + · · · + wrxr ]nq

⎛
⎝ r∏

j=1

χ(xj )

⎞
⎠ qa1x1+···+arxr dμ1(x1) . . . dμ1(xr).

Thus, we have

E(r)
n,χ,q(x|w1, . . . , wr; a1, . . . , ar )

= 2r

(1 − q)n

f −1∑
b1,...,br=0

(
r∏

i=1

χ(bi)

)
(−1)

∑r
j=1 bj q

∑r
i=1(lwi+ai )bi

∑n
l=0

(
n

l

)
(−1)lqlx∏r

j=1(1 + q(lwj +aj )f )
. (29)

From (29), we note that

E(r)
n,χ,q(x|w1, . . . , wr; a1, . . . , ar )

= 2r

∞∑
m1,...,mr=0

⎛
⎝ r∏

j=1

χ(mi)

⎞
⎠ (−1)m1+···+mr qa1m1+···+armr

⎡
⎣x +

r∑
j=1

wjmj

⎤
⎦

n

q

.

Therefore, we obtain the following theorem.

Theorem 6. For r ∈ N, w1, . . . , wr ∈ Zp and a1, . . . , ar ∈ Z, we have

E(r)
n,χ,q(x|w1, . . . , wr; a1, . . . , ar )

= 2r

∞∑
m1,...,mr=0

⎛
⎝ r∏

j=1

χ(mi)

⎞
⎠ (−1)m1+···+mr qa1m1+···+armr

⎡
⎣x +

r∑
j=1

wjmj

⎤
⎦

n

q

.

Let F (r)
q,χ (t, x|w1, . . . , wr; a1, . . . , ar ) = ∑∞

n=0 E(r)
n,χ,q(x|w1, . . . , wr; a1, . . . , ar )

tn

n! .

By theorem 6, we see that

F (r)
q,χ (t, x|w1, . . . , wr; a1, . . . , ar )

= 2r

∞∑
m1,···,mr=0

⎛
⎝ r∏

j=1

χ(mi)

⎞
⎠ (−1)m1+···+mr qa1m1+···+armr e[x+

∑r
j=1 wj mj ]q t . (30)
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3. Barnes-type multiple q-zeta functions

In this section, we assume that q ∈ C with |q| < 1 and the parameters w1, . . . , wr are positive.
From (28), we consider the Barnes-type multiple q-Euler polynomials in C as follows:

F (r)
q (t, x|w1, . . . , wr ; a1, . . . , ar )

= 2r

∞∑
m1,...,mr=0

(−1)m1+···+mr qa1m1+···+armr e[x+w1m1+···+wrmr ]q t

=
∞∑

n=0

E(r)
n,q(x|w1, . . . , wr ; a1, . . . , ar )

tn

n!
, for |t | < max

1�i�r

{
π

|wi |
}

. (31)

For s, x ∈ C with 
(x) > 0,a1, . . . , ar ∈ C, we can derive the following equation (32) from
the Mellin transformation of F (r)

q (t, x|w1, . . . , wr; a1, . . . , ar ):

1

�(s)

∫ ∞

0
t s−1F (r)

q (−t, x|w1, . . . , wr ; a1, . . . , ar )dt

= 2r

∞∑
m1,...,mr=0

(−1)m1+···+mr qm1a1+···+mrar

[x + w1m1 + · · · + wrmr ]sq
. (32)

For s, x ∈ C with 
(x) > 0, a1, . . . , ar ∈ C, we define the Barnes-type multiple q-zeta
function as follows:

ζq,r (s, x|w1, . . . , wr ; a1, . . . , ar ) = 2r

∞∑
m1,...,mr=0

(−1)m1+···+mr qm1a1+···+mrar

[x + w1m1 + · · · + wrmr ]sq
. (33)

Note that ζq,r (s, x|w1, . . . , wr) is the meromorphic function in the whole complex s-plane.
By using the Mellin transformation and the Cauchy residue theorem, we obtain the following
theorem which is a part of answer to the open question in [6, p 7637].

Theorem 7. For x ∈ C with 
(x) > 0, n ∈ Z+, we have

ζq,r (−n, x|w1, . . . , wr; a1, . . . , ar ) = E(r)
n,q(x|w1, . . . , wr ; a1, . . . , ar ).

Let χ be Dirichlet’s character with conductor f ∈ N with f ≡ 1 (mod 2). From (30),
we can define the generalized Barnes-type multiple q-Euler polynomials attached to χ in C as
follows:

F (r)
q,χ (t, x|w1, . . . , wr; a1, . . . , ar )

= 2r

∞∑
m1,...,mr=0

⎛
⎝ r∏

j=1

χ(mi)

⎞
⎠ (−1)m1+···+mr qa1m1+···+armr e[x+

∑r
j=1 wj mj ]q t

=
∞∑

n=0

E(r)
n,χ,q(x|w1, . . . , wr; a1, . . . , ar )

tn

n!
. (34)

From (34) and the Mellin transformation of F (r)
q,χ (t, x|w1, . . . , wr; a1, . . . , ar ), we can

easily derive the following equation (35) :

1

�(s)

∫ ∞

0
t s−1F (r)

q,χ (−t, x|w1, . . . , wr; a1, . . . , ar ) dt

= 2r

∞∑
m1,...,mr=0

(∏r
j=1 χ(mi)

)
(−1)m1+···+mr qm1a1+···+mrar

[x + w1m1 + · · · + wrmr ]sq
. (35)

9
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For s, x ∈ C with 
(x) > 0, we also define the Barnes-type multiple q-l-function as follows:

l(r)q,χ (s, x|w1, . . . , wr; a1, . . . , ar )

= 2r

∞∑
m1,...,mr=0

(∏r
j=1 χ(mj )

)
(−1)m1+···+mr qm1a1+···+mrar

[x + w1m1 + · · · + wrmr ]sq
. (36)

Note that l(r)q,χ (s, x|w1, . . . , wr) is the meromorphic function in the whole complex s-plane.
By using (34), (35), (36) and the Cauchy residue theorem, we obtain the following theorem.

Theorem 8. For x, s ∈ C with 
(x) > 0, n ∈ Z+, we have l(r)q,χ (−n, x|w1, . . . , wr;
a1, . . . , ar ) = E(r)

n,χ,q(x|w1, . . . , wr ; a1, . . . , ar ).

We note that theorem 8 is r-multiplication of Dirichlet’s-type q–l-series. Theorem 8 seems
to be interesting and worth studing in the area of multiple p-adic l-function or mathematical
physics related to Knot theory and ζ -function (see [4–22]).
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